
1Integrate
Performance Tips

Product version: v 1.2

Document version: v 1.0.1

Document date: 28/07/2016



Performance Tips - ii - v 1.0.1

Copyright 2016 1Spatial Group Limited.

All rights reserved. No part of this document or any information appertaining to
its content may be used, stored, reproduced or transmitted in any form or by
any means, including photocopying, recording, taping, information storage
systems, without the prior permission of 1Spatial Group Limited.

1Spatial

Tennyson House

Cambridge Business Park

Cambridge

CB4 0WZ

United Kingdom

Phone:+44 (0)1223 420414
Fax: +44 (0)1223 420044
Web: www.1spatial.com
Every effort has been made to ensure that the information contained in this
document is accurate at the time of printing. However, the software described
in this document is subject to continuous development and improvement.
1Spatial Group Limited reserves the right to change the specification of the
software. 1Spatial Group Limited accepts no liability for any loss or damage
arising from use of any information contained in this document.



Performance Tips - iii - v 1.0.1

Contents
1 Performance Tips 3

Use Indexes 3
Specify indexes in the input mapping 3
Use the unmodified value when comparing indexed data 5

Order Conditions Sensibly 6
Temporary Variables 7
Use Accurate Spatial Extents 9
Share Tasks 9
Efficient Input Mapping 9



Performance Tips - 3 - v 1.0.1

1 Performance Tips
This section provides advice on how to write rules and actions and set up data
stores and sessions in order to get the best performance when running
sessions in 1Integrate.

Use Indexes 3

Order Conditions Sensibly 6

Temporary Variables 7

Use Accurate Spatial Extents 9

Share Tasks 9

Efficient Input Mapping 9

Use Indexes
An index speeds up the identification of data within a rule or action.

Specify indexes in the input mapping
In the datastore input mapping page, every attribute within a class has a tick
box to allow you to specify whether the attribute should be indexed or not. The
primary geometry is always indexed.

For Oracle data any other columns with Oracle indexes on them (including
primary keys) will be set to be indexed by default.

Figure 1-1: Defining indexes in the Input Mapping of a datastore

If you need to identify features in a rule or action using an attribute as the
initial selection criteria, then you need to tick the box to index that attribute.

Identifying features means anywhere that you need to specify a class of
objects other than in the rule or action’s root node (e.g. using a For All,
Existence, Aggregate, Chaining or Loop Over Objects construct within a rule
or action).



Chapter 1 Performance Tips

Figure 1-2: A rule requiring an indexed value

If you are doing a spatial search (i.e. a comparison on the geometry) to identify
the nearby features before subsequently checking the ID, then the index on
the id is not required. You will only need it when the attribute is used as the
initial way to select the set of objects.

Figure 1-3: Index not required on Building because a small set of objects
already identified using another value (in this case a spatial search on the

geometry)

Performance Tips - 4 - v 1.0.1



Chapter 1 Performance Tips

Performance Tips - 5 - v 1.0.1

While you could just index all attributes just in case, this will require more disk
space for the cache while the session is running and will add an overhead to
the time taken to open the data within the session.

Use the unmodified value when comparing indexed
data
Whenever you use an indexed value (this includes the primary geometry) as
the first comparison then don’t apply any built-in functions to the value.

In order to use the index, the comparison needs to run on the raw attribute
value itself because this is what has been indexed, not the result of a built-in
function.

For example the action displayed below will be very slow because we can’t
use the spatial index to identify the admin areas. We are running the outer_
ring built-in function on each geometry first which means that every object in
the class will need be tested explicitly, rather than using the index on the
geometry to reduce the set.

Figure 1-4: Slow use of outer_ring function

Instead, you may need to add a new initial condition that uses the unmodified
value as the first condition, then AND it together with the more specific
condition that uses the outer_ring function.

You need to ensure that the first condition finds at least the  features that you
want, with as few as possible additional features.

In the example below, the spatial intersects condition will find all areas that
are spatially in contact with the line in some way. From this limited subset, we
get the outer ring of each one and do the comparison.



Chapter 1 Performance Tips

Figure 1-5: Faster use of outer_ring function

Order Conditions Sensibly
Conditions should be ordered sensibly, in order to reduce the selection set as
quickly as possible.

If you need to identify features in a rule or action using more than one
condition then you need to think about the order of these conditions. You will
need to do this anywhere that you specify a class of objects other than in the
rule or action’s root node (i.e. a For All, Existence, Aggregate, Chaining or
Loop Over Objects construct within a rule or action).

The conditions are applied in the order in which they appear, which means
that you need to order them so that the selection set is narrowed down as
quickly as possible. Knowledge of the data will help to decide how to achieve
this. Often a selection set is reduced using a spatial intersection or within
distance check but sometimes there is another attribute which can be used to
reduce the selection set.

Ensuring that the first condition uses an indexed value is the most important
consideration (see "Use Indexes" on page 3), but it is also useful to consider
the ordering of subsequent checks, based on either their complexity or ability
to reduce the selection set.

For example, In a rule which reduces the selection set spatially, then performs
a more detailed geometric comparison plus a simple attribute comparison,
then it will be quickest to perform the attribute comparison second and the
detailed geometric comparison third. The attribute comparison will be very
fast, so it is worth doing this before the final complex geometric check in order
to be able to easily reduce the number of complex geometric comparisons.

Performance Tips - 6 - v 1.0.1



Chapter 1 Performance Tips

Performance Tips - 7 - v 1.0.1

In the example shown below, the action sets a road centreline to be non-
drivable if it is at least 90% within footpath polygons. Here we look at the
classification string value before doing a more complex spatial comparison.

Figure 1-6: Put simple checks before complex checks.

Temporary Variables
When writing actions, you can reduce the amount of repeated processing
within aggregate values or loops by storing computed values as temporary
values.

A loop could be existence, for all or chaining conditions, as well as while
loops or loop over objects operations.

If each iteration of the loop is performing some non-trivial work on the current
object such as buffering, then it is quicker to perform the buffering once,
assign the result to a temporary value and then use the temporary value within
the loop.



Chapter 1 Performance Tips

The For all loop displayed in the action below will calculate the buffer of the
current Centre-Line object for every iteration, even though the result will be
identical each time.

Figure 1-7: Buffering occurs for every iteration of the loop

The action below will be faster, as the buffer is calculated only once, stored as
a temporary variable and then the temporary variable is used within the loop.

Figure 1-8: Buffer is calculated only once

Performance Tips - 8 - v 1.0.1



Chapter 1 Performance Tips

Performance Tips - 9 - v 1.0.1

Use Accurate Spatial Extents
The spatial extents of data read from Oracle are read (if they exist) from the
Oracle spatial metadata table (USER_SDO_GEOM_METADATA).

The more accurate these extents are, the better the performance of spatial
searches. It will still find and process data regardless of these extents
(although if they are orders of magnitude wrong the Build Topology task might
complain) but it will improve performance if they are roughly right. This will
improve all conditions or operations which use the geometry as the first
comparison, as well as the Build Topology task.

To see the current setting for the spatial extents, you can view the geometry
attributes (see Viewing Geometry Attributes).

Share Tasks
When developing and testing rules and actions, you usually create a task for
each rule or action within a session so that you can easily see the results for
each task.

If you have multiple rules or actions that run on the same class name, then it is
quicker to run these within the same task. This is because when an object is
"grabbed" we can run all the relevant rules or actions while it is to hand.
Otherwise, if the rules or actions are all in their own tasks, then all the objects
in the relevant class are cycled through for each task.

Note: Be careful with actions; the order of how rules or actions are run
within the same task is not guaranteed. For rules this does not matter
as rules are stateless (i.e. they don’t change the state of the data so the
order doesn’t matter) but for actions, you often rely on the order in
which they are run. If this is the case then you will need multiple tasks
to run your actions in order to guarantee the order in which they are
run.

Efficient Input Mapping
When setting up Input Mapping for a data store, you can specify which
attributes to include and which to exclude by selecting and deselecting
attributes for each input class.

If you only need to access, update or "copy to" a subset of these attributes,
then opening and committing a data store can be made faster by only
enabling the attributes that you require.


	1 Performance Tips
	Use Indexes
	Specify indexes in the input mapping
	Use the unmodified value when comparing indexed data

	Order Conditions Sensibly
	Temporary Variables
	Use Accurate Spatial Extents
	Share Tasks
	Efficient Input Mapping


