
1Integrate
Built-in Function
Programmer Guide

Product version: v 2.9

Document version: v 1.2

Document date: 13/05/2021

Built-in Function Programmer
Guide

- ii - v 1.2

Copyright 2021 1Spatial plc and its affiliates.

All rights reserved. Other trademarks are registered trademarks and the
properties of their respective owners.

US Patent Number 9542416 B2 (2017-01-10)

No part of this document or any information appertaining to its content may be
used, stored, reproduced or transmitted in any form or by any means,
including photocopying, recording, taping, information storage systems,
without the prior permission of 1Spatial plc.

1Spatial
Tennyson House
Cambridge Business Park
Cambridge
CB4 0WZ
United Kingdom
Phone: +44 (0)1223 420414
Fax: +44 (0)1223 420044
Web: www.1spatial.com

Every effort has been made to ensure that the information contained in this
document is accurate at the time of printing. However, the software described
in this document is subject to continuous development and improvement.
1Spatial plc reserves the right to change the specification of the software.
1Spatial plc accepts no liability for any loss or damage arising from use of any
information contained in this document.

Built-in Function Programmer
Guide

- iii - v 1.2

Contents
1 Overview 4

Prerequisites 4

2 Creating Functions 5
Class Interface 5
Public Methods 6
Casting Input Parameters 8
Returning Values from a Function 9
Destroying Geometries and Descriptor Objects 9

Creating an Extension jar 10
Testing a New Function 11

3 Sample Code 12

Built-in Function Programmer
Guide

- 4 - v 1.2

1 Overview
The Rule extensibility API allows you to create custom functions ("built-in
functions") in Java for use in the 1Integrate rule builder.

This guide explains the 1Integrate Rule Extensibility API using sample code
supplied with 1Integrate, and provides details on how to write and implement
your own code.

The sample source code is located in the Documentation directory of your
installation package and in "Sample Code" on page 12.

Prerequisites
This guide assumes you have the following skill set and software tools:

A good understanding of how to use 1Integrate
A good knowledge of Java for creating custom built-in functions
A Java editor

Built-in Function Programmer
Guide

- 5 - v 1.2

2 Creating Functions
Each new built-in function is held in a self-contained Java class. This class
defines the functionality, the interface, and the help tooltip, as seen in the rule
builder.

Once created, built-in functions are accessed in the 1Integrate Rule Author
interface.

Figure 2-1: A built-in function within the 1Integrate Rule Author

Class Interface
Each function is implemented in its own class. To ensure the functionality is
called correctly and the tooltip is displayed, the class defining the new
function must be set up as follows:

Declaration - public class [class_name] implements
BuiltinFn declares the class as a function.

As a special case, if you want to pass 3D geometries to this function,
then also implement from the Builtin3D class. The name of the class is
not displayed in the 1Integrate interface; the results of the getName
function is displayed.

Classes to import - To ensure your new functions can access the data
in the 1Integrate cache, you need to import a set of classes held in the
gothic library:

gothic.main.GothicException
com.onespatial.rule.interfaces.BuiltinFn

Chapter 2 Creating Functions

Note: You can import other classes to implement functions, such
as geometry manipulation. For these classes, refer to the Java
API documentation *-javadoc.jar, within the 1Integrate-
api-<version>.zip.

These classes are in the gothic-java-[version].jar and
rulelibapi-[version].jar files, available in the 1Integrate-
api-<version>.zip which is included in the product package.
These libraries are included in the package to enable the building of
custom built-in functions

Note: You must either define a no argument constructor or provide no
constructors and allow the default to be used.

Public Methods
The following public methods must be set up for each function:

Public Method Description

public String
getName()

Returns a name in the Built-in Function list in
1Integrate.

The name does not need to be the same as the
class_name.

public int
getMinNumArgs()

Returns the minimum number of parameters to be
passed to the built-in function.

This can be zero or more, and represents the
number of non-optional parameters.

public int
getMaxNumArgs()

Returns the maximum number of parameters to be
passed to the built-in function.

This can be any number equal to or greater than
the minimum number of parameters and represents
the number of non-optional parameters plus the
maximum number of non-optional parameters.

For unlimited parameters, return Integer.MAX_
VALUE.

For a fixed number of parameters, then this method
should return the same number as
getMinNumArgs.

Built-in Function Programmer
Guide

- 6 - v 1.2

Chapter 2 Creating Functions

Built-in Function Programmer
Guide

- 7 - v 1.2

Public Method Description

public Object
evaluate(Object
[] args) throws
GothicException

Contains the functionality for a built-in function.

The return value is an Object. The arguments are
an array of Objects that must be cast to the required
class within this function.

The following functions will be used to populate the tooltips within the Rule
and Action builder user interface:

Note:When creating stings, avoid HTML reserved characters such as
<>;& unless they are used as valid HTML.

Function Description

public String
getVersion()

Returns your version number for the built-
in function as a string, for example “1.0”.

public String
getGeneralDescription()

Returns a general description of the
function as a string.

The return value will be embedded within
HTML, so HTML formatting can be used
if required.

public String
getArgumentDescription
(int arg)

Returns the description of the argument
for the specific number (starting from 0).

This will be called for each argument
from 0 up to, but not including,
getMaxNumArgs().

The return value will be embedded within
HTML, so HTML formatting can be used
if required.

If there is an unlimited number of
arguments (i.e.
Java.lang.Integer.MAX_VALUE)
then only the description for the first
optional argument is displayed.

public String
getReturnDescription()

Returns a description of the function’s
return value.

The return value will be embedded within
HTML, so HTML formatting can be used
if required.

Chapter 2 Creating Functions

Function Description

public String getGroup
()

Returns the name of the group of
functions within which to list this built-in
in the interface.

Note: This does not need to be
an existing group, a new group
will be created if it does not
already exist.

If this is unimplemented or returns null,
then the functions will be listed in a
default group.

Default groups are:

Geometric
Identity
Mathematical
Bit Manipulation
String
Timestamp
Topological
Collection
Shifting

Casting Input Parameters
The input parameters to a function are passed in to the evaluate() method
as an array of Java.lang.Objects.

You should cast each array value into the correct Java class. The values in
the array are in the same order as the parameters passed to the function. The
mapping from 1Integrate data types to Java objects is as follows:

1Integrate data type Java object

Boolean java.lang.Boolean

Date/Timestamp gothic.descriptor.Timestamp

Geometry 2D gothic.descriptor.Geometry

Geometry 3D gothic.descriptor.HeightedGeometry

Built-in Function Programmer
Guide

- 8 - v 1.2

Chapter 2 Creating Functions

Built-in Function Programmer
Guide

- 9 - v 1.2

1Integrate data type Java object

Integer java.lang.Integer

Integer64 java.lang.Long

Object gothic.main.GothicObject

Real java.lang.Double

String java.lang.String

Returning Values from a Function
Typically you will return values of types listed in "Casting Input Parameters"
on the previous page, which then get assigned or reported within a rule or
action.

Destroying Geometries and Descriptor Objects
All objects inheriting from gothic.descriptor.Descriptor that are
created inside the evaluate () must be destroyed to prevent memory leaks
and keep memory usage low during processing.

The most commonly used objects of this class are
gothic.descriptor.Geometry.

Note: All input parameters will be destroyed by 1Integrate after the
method has returned. If any gothic.descriptor input parameters
will be modified and returned from the method, ensure that you return a
copy of the object (using the copy () method) before returning the
value. For geometries, do not make any modifications to the input
geometry before copying it. Otherwise, you will modify the original
geometry passed in to the function and the Rule or Action may
produce unexpected results.

To destroy the objects, call the destroy () method on each object before
the method returns. To ensure that this happens in all cases, put the destroy
call within a finally () block.

For example:

Geometry inputGeom = (Geometry)args[0];

Geometry bufferedGeometry = null;

try

{

Chapter 2 Creating Functions

bufferedGeometry = inputGeom.bufferCreate(10.0,
10.0);

return bufferedGeometry.getData().areaArea

}

finally

{

if (bufferedGeometry != null)

bufferedGeometry.destroy();

}

Creating an Extension jar
Custom built-ins must be compiled and packaged into a .jar file.
When compiling the java files, you must ensure the gothic-java jar file
is on the classpath.

In order for 1Integrate to find the new built-ins, a java ServiceLoader
configuration file must also be present within the .jar file. This should be a
single file called META-
INF/services/com.onespatial.rule.interfaces.BuiltinFn.
The file should contain fully qualified names of any built-in function
implementation classes that you have created, with one per line.

Note: The .jar file can be created using any standard Java
development environment, such as Eclipse.

WebLogic deployment:
For WebLogic, the location of the .jar file must be specified using the
1SMS Installation Wizard.

When installing 1Integrate, two parameters are requested for both the
1Integrate Interface and 1Integrate Session Queue.

Tick the Include Custom Extensions parameter and then use the Selected
Custom Extensions parameter to browse to your .jar file.

Note: If you need to replace this .jar file for any reason, you will need
to uninstall 1Integrate and then re-install it using the 1SMS Installation
Wizard.

Built-in Function Programmer
Guide

- 10 - v 1.2

Chapter 2 Creating Functions

Built-in Function Programmer
Guide

- 11 - v 1.2

Parameter Description

Custom Extensions

Include Custom Extensions Tick this box to include custom extensions.

Selected Custom Extensions Browse for custom extensions to be
included.

Wildfly deployment:
For Wildfly, after starting the interface and engine for the first time, copy the
.jar file into standalone/deployments/ms-integrate-interface-
[version].ear/APP-INF/lib and also into standalone-
sessionqueue/deployments/ms-integrate-sessionqueue-
[version].ear/APP-INF/lib then restart both applications.

Testing a New Function
Note: The entire application server must be restarted before testing the
new functionality.

Test a newly created function:

1. Create a new rule with something that requires a value, such as a
condition comparison.

2. Within the Element Details tab, select a Type of Built-in Function, then
use the Function drop-down list to select the new function.

3. Using the Help tooltip, check that the number of minimum and maximum
parameters, the version number, and other descriptions are correct.

4. Check you can add parameters up to, but not over, your expected
maximum.

5. Create a new session and apply the rule.

6. If behaviour is not as expected, then correct any errors, rebuild the .jar
file and re-deploy it to the application server (see "Creating an Extension
jar" on the previous page).

Built-in Function Programmer
Guide

- 12 - v 1.2

3 Sample Code
package sample.oneintegrate.builtin;

import gothic.descriptor.Descriptor;

import gothic.descriptor.Geometry;

import gothic.descriptor.HeightedGeometry;

import gothic.main.GothicException;

import gothic.support.rv.GeometrySaGetDataRV;

import com.onespatial.rule.interfaces.BuiltinFn;

/**

* Built-in function to return the ‘roundness’ of a polygon, calculated as

* (area * 4 * pi/(perimeter squared) of a geometry.

*/

public class Roundness implements BuiltinFn

{

public String getName()

{

return "get_roundness";

}

public String getVersion()

{

return "1.1";

}

public int getMinNumArgs()

{

return 1;

}

public int getMaxNumArgs()

{

return 1;

}

public String getGeneralDescription()

{

return "Calculate the ‘roundness’ of a polygon, calculated
as

(area * 4 * pi/(perimeter squared) of a geometry. Perfect
circles

Chapter 3 Sample Code

return 1, more complex and spidery shapes return lower
values.";

}

public String getArgumentDescription(int arg)

{

if (arg == 0)

{

return "A simple or multi polygon geometry. If empty
or

non-polygon geometries are passed in then 0 is
returned.

If non-geometry types are passed in then an exception
is

raised.";

}

else

{

return null;

}

}

public String getReturnDescription()

{

return "A real value between 0 and 1. 1 means a perfect
circle,

0 means a fractal of infinite complexity.";

}

public String getGroup()

{

return "Example Group";

}

public Object evaluate(Object[] args) throws GothicException

{

Geometry geomArg = null;

double area, perimeter;

GeometrySaGetDataRV info;

try

{

if (args[0] instanceof Geometry)

{

Descriptor arg0 = (Descriptor) args[0];

geomArgs = (Geometry) arg0.copyDescriptor();

}

Built-in Function Programmer
Guide

- 13 - v 1.2

Chapter 3 Sample Code

Built-in Function Programmer
Guide

- 14 - v 1.2

else if (args[0] instanceof HeightedGeometry)

{

HeightedGeometry arg0 = (HeightedGeometry)
args[0];

geomArgs = arg0.get2DGeometry();

}

else

{

throw new GothicException("This function must
be

passed a geometry");

}

if (geomArg.getType() != Geometry.SIMP_AREA &&

geomArg.getType() != Geometry.COMP_AREA)

{

return new Integer(0);

}

// empty geometries are ignored

if(geomArg.testClear())

{

return new Integer(0);

}

info = geomArg.saGetData();

area = info.totalArea;

perimeter = info.perimeter;

// return (area * 4 * pi) / perimeter squared

return new Double(area * 4 * java.lang.Math.PI) /

(perimeter * perimeter);

}

finally

{

if (geomArg != null)

{

geomArg.destroy();

}

}

}

}

	1 Overview
	Prerequisites

	2 Creating Functions
	Class Interface
	Public Methods
	Casting Input Parameters
	Returning Values from a Function
	Destroying Geometries and Descriptor Objects

	Creating an Extension jar
	Testing a New Function

	3 Sample Code
	Bookmarks
	Casting
	Creating

