spatial

¥OUR WORLD SMARTER

REST API Guide

Product version: v 3.1

Document version: v 1.7
Document date: 03/11/2021

Copyright 2021 1Spatial plc and its affiliates.

All rights reserved. Other trademarks are registered trademarks and the
properties of their respective owners.

No part of this document or any information appertaining to its content may be
used, stored, reproduced or transmitted in any form or by any means, including
photocopying, recording, taping, information storage systems, without the prior
permission of 1Spatial plc.

1Spatial

Tennyson House
Cambridge Business Park
Cambridge

CB4 0WZz

United Kingdom

Phone: +44 (0)1223 420414
Fax: +44 (0)1223 420044

Web: www.1spatial.com

Every effort has been made to ensure that the information contained in this
document is accurate at the time of printing. However, the software described
in this document is subject to continuous development and improvement.
1Spatial plc reserves the right to change the specification of the software.
1Spatial plc accepts no liability for any loss or damage arising from use of any
information contained in this document.

REST API Guide - i - v1.7

Contents

1 1Integrate REST APl 5
Notation .l 5
Defaults 5

2 Authentication ... 6

3 Basic Operations ... 8
Folder Listing ... 8
Retrieving Resources 9
Creating and Updating Resources ... 9
Creating Folders or Updating Folder Metadata ... 9
Deleting Resources 10
CloniNg RESOUICES 10

4 ReSOUICESl 12
COMMON 12

B S eSSIONS . 13
SessioN Properties ... 15

Session Extents ... 18
Session Parameters 19
Set and Retrieve individual Parameters 20
Session Control ... 21
Check Session Status ... 21
Session Summary Results ... 21
TaSKS .l 23
OpenData ... 24
BUIldTOPOIOGY ... 27
CheckRUIES ... 28
ApplyActions ...] 28
ApplyActionMap ... 29
CoPY T O 29
oMMt 31
Pause .. 31

6 Data Stores ...l 32
Data store Resource Properties ... 33
Data store Creation from File Upload ... 35

Providing Export Mapping Files ... 38
Data Store Creation from Credentials ... 38

REST API Guide - iii - v1.7

Credentials Properties 41
MaplInfo Tab (GDAL) ... 41
Oracle 42
ESri Shape ... 44
Esri File Geodatabase (FILEGDB) ... 47
POStGIS 49
Other Data Store Formats ... 51

Password Properties ... 52

Automatic Schema Derivation ... 52
Import Schema Derivation ... 52
Export Schema Derivation ... 52

Schema Mapping ... 53
Testand Refresh Mapping ... 55

User Defined Classes ... 56
CopyTo Task Output File Download ... 59

T RUleSs . .l 60
8 Actions 62

AcCtioN Maps ... 63
OResults . . 64

Task SUMMANY ... 64
Detailed Non-conformance or Error Reports 65
Summarised Error Reports ... 66
Summarised FolderResults ... 66

REST API Guide -iv - v1.7

Chapter 1 1Integrate REST API

1Integrate REST API

The REST API provides a simple integration point for 1Integrate. This allows
resources (datastores, rules, actions, action maps, sessions) within the
application to be created, edited and deleted in a similar manner to the main
user interface. There are also endpoints for controlling a session (run, pause,
stop), and getting session results (non-conformances, errors).

The REST API has been designed to be used with any client language or http
client library.

The API requires authorisation headers and utilises a number of different
request types such as POST and PUT, so responses cannot be tested using a
web browser.

If you try and request a resource suchas http://[server] :
[port]/lIntegrate/rest/datastores fromaweb browser, then the
response will be an HTTP 401 (unauthorised) error.

il Note: Not all browsers will display the fact that an error has occurred.

To test the URL for the API connection it is recommended that you use your
chosen REST client.

'3’] Note: This document assumes knowledge of 1Integrate concepts; the
concepts and capabilities are not described in detail within this
document. For more information see the 1Integrate WebHelp.

Notation

Within this document, the following colour-coding is used to demonstrate
APl requests and responses:

Green boxes represent example requests

Grey boxes represent example properties that can be
passed in the request

Purple boxes represent example responses

Defaults

Unless stated otherwise, both the Accept and Content-Type headers for all
requests must be setto application/json.

REST API Guide -5- v1.7

https://1spatial.com/documentation/1integrate

Chapter 2 Authentication

ﬂ Authentication

All calls to the rest service must be authenticated by using a JSON Web Token.

Tokens can be generated via a POST to the token service using an appropriate
username and password. Note that the username must have the rswsuser role
in order to access the API, an example request and example authorization
header is show below:

POST http://<server>:<port>/lIntegrate/rest/token

{"username" :"userl", "password":"passwordl"}

This will return an Authorization header:

Any subsequent API calls must have an Authorization entry in the header with
the value of '‘Bearer' followed by a space, followed by the token returned in the
Authorization header of the call to the token service, as in the following
example:

The token needs to be added to the header with a 'Bearer' keyword, for
example in Python:
url = 'http://localhost:18080/1lintegrate/rest/%

tokenResponse = requests.post(url $ 'token', Jjson=

{'username':'<user>', 'password': '<password>'}

REST API Guide -6- v1.7

Chapter 2 Authentication

tokenResponse.raise for status()

token = 'Bearer' + tokenResponse.headers'Authorization'

#Create a requests session to avoid having to specify headers on each
call.

requestSession = requests.Session ()

requestSession.headers.update({'Authorization': token, 'Accept':
'Application/JSON',

'Content-Type': 'Application/JSON'}

)
An example in PowerShell script:

$Body = '{"username":"'+S$Username+'", "password":"'+S$SPassword+'"}'

SResponse = Invoke-WebRequest -Uri
'http://<server>:8080/1lIntegrate/rest/token' -Method Post -Body $Body

Read the token from the header

SToken = S$Response.Headers.Authorization

Now use the token returned in the header when sending requests

Note, need to add 'Bearer ' before the token in the authorization header
SHeaders = @{}

SHeaders.Add ("Authorization", "Bearer " + S$Token)

By default the token will last 2 hours. When you use a token to access the
1Integrate REST API and the server detects that your token is about to expire,
it will refresh your token and send the new token back with the response, again
in the Authorization response header.

If a longer lasting token is required, a 2 week long token can be created using
the following request:
POST

http://<server>:<port>/lIntegrate/rest/token?rememberMe=t
rue

REST API Guide -7- v1.7

Chapter 3 Basic Operations

E Basic Operations

The APl is structured following the folder structure of resources within the main
application.

Folder Listing

A GET request to the path of a folder will retrieve the folder metadata and a
listing of children of the folder.

GET http://<server>:<port>/lIntegrate/rest/datastores
GET http://<server>:<port>/lIntegrate/rest/rules

GET http://<server>:<port>/lIntegrate/rest/actions
GET http://<server>:<port>/lIntegrate/rest/actionmaps

GET http://<server>:<port>/lIntegrate/rest/sessions

REST API Guide -8- v1.7

Chapter 3 Basic Operations

Retrieving Resources

Resources can be retrieved with a GET request to the full resource path.

GET http://<server>:<port>/lIntegrate/rest/datastores/
{path}

{l Note: The easiest way to find the structure of the JSON for creating or
updating items is to create them in the user interface and then GET
them to inspect their structure.

The path to a resource is the folder structure from 1Integrate for the particular
resource type. For example, for a Session called "A" that is within the folder
structure "/X/Y/" then the path to that session is
http://<server>:<port>/lIntegrate/rest/sessions/X/Y/A.

'{I Note: Session results are accessed from the results resource, using
the path to the relevant session, and not from the sessions resource.

Creating and Updating Resources

Resources are created or updated through PUT requests. These should
contain the full JSON of the resource to be created.

If the parent folders in the request do not exist they will be created
automatically.

For examples of each type of resource, see "Resources" on page 12.

Creating Folders or Updating Folder
Metadata

Folders can be created, or folder metadata (description, comments) can be
updated using a PUT request to the folder path, with a query parameter
folder=true.

PUT http://<server>:<port>/lIntegrate/rest/sessions/
{path}?folder=true

{

"description": "test description",
"comments": "test comments"

}

{
"comments": "test comments",

REST API Guide -9- v1.7

Chapter 3 Basic Operations

Deleting Resources

Resources or folders can be deleted with a DELETE request.

Deleting a folder will recursively delete all items contained within the folder.

DELETE http://[server]: [port]/lIntegrate/rest/sessions/
{path}

Cloning Resources

Resources or folders can be cloned with a PUT request.
PUT http://<server>:<port>/lIntegrate/rest/clone

REST API Guide -10- v1.7

Chapter 3 Basic Operations

If copying a directory of resources as shortcuts, the directory is cloned and only
the resources contained within are created as shortcuts.

When requesting a single entity an example response would be:

When requesting multiple entities, responses will return as follows:

REST API Guide -11- v1.7

Chapter 4 Resources

ﬂ Resources

The following types of resource can be managed within the REST API:

Connections to datastores
Rules

>
2

» Actions
» Action Maps
>

Sessions (and Tasks)

Common

All resource types have the following common contents.

[il Note: Items may be omitted when they are default or not specified.

The creation and update timestamps and users are maintained automatically.
They do not need to be specified for create or update operations, but will
always be returned from the service.

The version property is used for optimistic locking to avoid concurrent users
accidentally making conflicting edits. If multiple requests are made to update a
resource with the same version then they will be rejected.

{I Note: If you get a response with status 409 Conflict when tryingto
update a resource, this means someone else has updated the resource
before you. Perform a GET to get the latest version of the resource and
retry the update using that version.

REST API Guide -12 - v1.7

Chapter 5 Sessions

E Sessions

Sessions contain a list of tasks, with varying content depending on the kind of
task(s) they contain (see "Tasks" on page 23).

Responses containing session resources will include the common resource
properties (see "Common" on page 12), as well as other session-specific
properties (see "Session Properties" on page 15).

Sessions can also be created or updated via PUT requests.

GET http://[server]:[port]/lIntegrate/rest/sessions/
{path}

REST API Guide -13- v1.7

Chapter 5 Sessions

REST API Guide

Chapter 5 Sessions

Session Properties

status (Read (Readonly) One of:
only) » NOT_STARTED
» RUNNING
» PAUSED
» FINISHED
» WAITING
» PAUSING
» REWINDING
» UNKNOWN
» STOPPING
tasks Array of Optional Tasks to be runin the
task session.
objects
(See
"Tasks"
on
page 23)

a
AN

REST API Guide -15- v1.7

Chapter 5 Sessions

Property Name 2;:; Optionality Description
runAsMultiplePartitions Boolean Optional True indicates the
(default: extent will be
false) partitioned, and a
separate session will be
run for each partition.
Only valid for ‘Several
Predefined Regions’
sessions — see Session
Extents section.
Conversely, this must
be false for all other
extent types.
Equivalent to Ul
checkbox ‘Run as
multiple partitions’.
extentBuffer Double Optional A Buffer can be set to
(default: 0) consider datain a
region that is larger
than the selection. The
buffer value is in
dataset units.
extentAsBoundingBox See Optional See "Session Extents"
"Session (See on page 18
Extents” wgegsion
on Extents" on
page 18 page 18)
extentAsPolygon String
extentFromDatastore See
"Session
Extents"
on
page 18

REST API Guide -16 - v1.7

Chapter 5 Sessions

Data . . .
Property Name Type Optionality Description
engineFilter String Optional Use engineFilter to

restrict the engines on
which this session can
runon. Use a
combination of the
labels set on the
engines at the time of
installation.

The following operators
are supported:

&&

| can be added to a
label to check that it
is not present

you can also group
expressions together
with ()

For example to run the

session on engines that
have the label "fast" use
engineFilter=fast

Or to run on engines
that have both the "fast"
and "slow" labels use
engineFilter=fast
&& slow

REST API Guide -17 - v1.7

Chapter 5 Sessions

Session Extents

The extent to be used in a session can be determined using the same extent
types available in the 1Integrate Ul, by passing the properties
(extentAsBoundingBox, extentAsPolygon and
extentFromDatastore).

il Note: The properties extentAsBoundingBox, extentAsPolygon
and extentFromDatastore are mutually exclusive; requests using
more than one of these properties will be refused.

Extent Type How to achieve this in the REST API
All Data Do not provide any extent properties in the request.

Bounding Box Provide an extent in terms of minimum and maximum X and
Y values using the extentAsBoundingBox property.

"extentAsBoundingBox":
{

"maxX": 10,

"maxY": 10,

"minX": O,

"minY": O

}

One Pre- Provide an extentFromDatastore property with
defined attributeName populated.

Region "extentFromDatastore":
{

"attributeName": "ID",
"attributeValue": "1",
"className": "ROADS",
"datastore": "/datastores/TestDatastore"

}
These values correspond to the Ul fields as follows:

Table is className
Where is attributeName
Equalsis attributevalue

REST API Guide -18- v1.7

Chapter 5 Sessions

Extent Type How to achieve this in the REST API
Several Pre- Provide an extentFromDatastore property without an
defined attributeName populated.

Regions

Requires the additional property
runAsMultiplePartitions tobesetto true.

"extentFromDatastore":

{

"className": "ROADS",

"datastore": "/datastores/TestDatastore"
by
"runAsMultiplePartitions": true

These fields correspond to the Ul fields:

Table is className

Polygon Provide an extendAsPolygon property. This is Well-
Known text in a string, and must be a polygon.
"extentAsPolygon": "POLYGON((O O, O 10, 10
10, 0 0)) "

Session Parameters

One or more named parameters can be set on a session, for use within rules or
actions.

Using a GET request will return all parameters that have been set for the
session.

GET http://[server]:
[port]/lIntegrate/rest/sessions/<session name>/parameters

This will return a list of each parameter available in the session, formatted as
below:

[

{

"name":"ID VALUE",

"description":"<Example Description>",

"type":"INTEGER",

"value":"0"

}

]

Using a PUT request will replace all parameters in the session with the one you
supply

REST API Guide -19- v1.7

Chapter 5 Sessions

PUT http://[server]:[port]/1Integrate/rest/sessions/<session name>/parameters

'{I Note: The supported types are: INTEGER, STRING, BOOLEAN,
DOUBLE, or LONG. If a value has a different type than specified (e.g. a
LONG value given an INTEGER type), an error will be encountered at
runtime when the session definition is validated.

. J

Set and Retrieve individual Parameters

You can also set or retrieve the details of individual parameters within a
session.
Using a GET request will return the details of the specified parameter.

GET http://[server]:
[port]/lIntegrate/rest/sessions/<session
name>/parameters/<parameter name>

[
{

"name" :"<Specified parameter>",
"description":"<Example Description>",
"type" :"INTEGER",

"value":"0"

}

]

You can also use a PUT request to replace the parameter by providing new
properties.

PUT http://[server]:
[port]/lIntegrate/rest/sessions/<session
name>/parameters/<parameter name>

REST API Guide -20- v1.7

Chapter 5 Sessions

Session Control

Sessions can be controlled via POST requests.

POST http://[server]:[port]/lIntegrate/rest/sessions/
{path}?action=play

POST http://[server]:[port]/lIntegrate/rest/sessions/
{path}?action=pause

POST http://[server]:[port]/lIntegrate/rest/sessions/
{path}?action=stop

POST http://[server]:[port]/lIntegrate/rest/sessions/
{path}?action=rewind&taskIndex=

The response for these requests will just be status code 202.

Check Session Status

The status and results for a session are available from results resource that is
parallel to the session resource. The same session path is used to access the
results for the session. For example, if a session resource is at:

http://[server]:
[port]/lIntegrate/rest/sessions/Folderl/MySession

Then, the results are available from:

http://[server]:
[port]/lIntegrate/rest/results/Folderl/MySession

You can check the status of a session using a GET request.

GET http://[server]:[port]/lIntegrate/rest/results/
{path}?detail=status

See "Session Properties" on page 15 for a list of possible values of the status
property.

Session Summary Results

Return the summary report of a session with all its tasks.

REST API Guide -21- v1.7

Chapter 5 Sessions

GET http://[server]:[port]/lIntegrate/rest/results/{path}

REST API Guide

Chapter 5 Sessions

Tasks

Tasks are managed through sessions (see "Sessions" on page 13), and are
placed in a sequence to determine the order in which they should be

performed.

The kind property is common to all tasks types, and determines other
configuration options for the task.

REST API Guide -23 - v1.7

Chapter 5 Sessions

The following types of task can be included in a session:

4
4
4
4
4
4
4
4

OpenData
BuildTopology
CheckRules
ApplyActions
ApplyActionMap
CopyTo

Commit

Pause

OpenData

REST API Guide -24 - v1.7

Chapter 5 Sessions

Data Optionali

Property Name Type ty Description
datastore String Mandator Resource path of the
y datastore to connect to.

restrictToOpenedData Boolea Optional Enable or disable to restrict

Extent n the opening of data to
classes selected in an Open
Data task

openedDataBufferDista Integer Optional A bufferin dataset units

nce around the extent opened by
restrictToOpenedDataFk
xtent

REST API Guide -25- v1.7

Chapter 5 Sessions

Data Optionali

Property Name Type ty

Description
classes Array Optional Enable or disable specific
of classes during load.

objects Not providing this property

will load from all classes as
configured in the datastore.

Each element of the array
takes the form:

{

"disabled": true,

"name": "className"

}

disabled defaults to
false, so specifying the
name of a class is enough to
enable it. Both of the below
are equivalent:

{

"name": "className"

}

{
"disabled": false,

"name": "className"
}

If a class is configured in the
datastore but not the
classes array, itis
effectively disabled.

parameters Object Optional Used for some niche
functionality, such as
connecting to a specific
database version or
workspace.

topologyEnabled Boolea Optional Equivalentto the Ul
n (default: checkbox Enable Topology.

false)

REST API Guide -26- v1.7

BuildTopology
{

Chapter 5 Sessions

"kind": "BuildTopology",
"model": “NETWORK”,
"snappingType": "SHARE NODES",
"tolerance": 0.5
}
Property Data . . T
Name T Optionality Description
model String Mandatory Valid inputs are NETWORK or
PLANAR.
Equivalent to Ul field Model.
snappingType String Mandatory If model is NETWORK, can be
one of: SHARE NODES, NODES
SPLIT EDGESOr EDGES
SPLIT EDGES.
If model is PLANAR, must be
EDGES_SPLIT EDGES.
Equivalent to Ul field Snapping
type.
tolerance Double Optional Topological tolerance to use
(default: 0) during structuring.
A value of 0 will instead derive a
tolerance from loaded data.
classes Array of Optional Specify classes to be
Strings topologically structured.
Omitting this parameter will not
structure any classes.
REST API Guide -27 - v1.7

Chapter 5 Sessions

CheckRules

Array of Optional Array of rule and/or rule folder
Strings resource paths.

ApplyActions

actions Array of Optional Array of action and/or action folder
Strings resource paths.

REST API Guide -28 - v1.7

Chapter 5 Sessions

ApplyActionMap

actionmap String Mandatory Resource path of an action
map.

CopyTo

REST API Guide -29- v1.7

Chapter 5 Sessions

Property Data

Name Type Optionality Description

datastore String Mandatory Resource path of the datastore to
connect to.

classes Array of Optional Enable or disable specific classes
objects during write.
Not providing this property will write
to all classes as configured in the
datastore.

Each element of the array takes the
form:

{

"disabled": true,

"name": "className"

}

disableddefaultsto false, so
specifying the name of a class is
enough to enable it. Both of the
below are equivalent:

{
"name": "className"
}

{
"disabled": false,

"name": "className"
}

If a class is configured in the
datastore but notthe classes
array, it is effectively disabled.

parameters Object Optional Used for some niche functionality,
such as connecting to a specific
database version or workspace.

REST API Guide -30- v1.7

Chapter 5 Sessions

Commit

{l Note: Commit properties are the same as the CopyTo properties, but
without classes

{

"kind": "Commit",
"datastore": "/datastores/path/to/MyDatastore",
"parameters":
{
"someUnusedParameter": 0

Property Data

Name T Optionality Description
datastore String Mandatory Resource path of the datastore to
connect to.
parameters Object Optional Used for some niche functionality,
such as connecting to a specific
database version or workspace.
Pause

A Pause task is used to pause a session once it is running. It has no
configurable properties.

{

"kind": "Pause"

REST API Guide -31- v1.7

Chapter 6 Data Stores

ﬁ Data Stores

The full specification of a data store within 1Integrate is often a complex
structure encapsulating an entire data model. The REST API provides a
number of convenient methods for constructing a data store.

Responses containing datastore resources will include the common resource
properties (see "Common" on page 12), as well as other datastore-specific
properties (see "Data store Resource Properties" on the next page).

Data Stores can also be created or updated via PUT requests.

GET http://[server]:[port]/lIntegrate/rest/datastores/
{path}

REST API Guide -32- v1.7

Chapter 6 Data Stores

Data store Resource Properties

Property Name
importType

Data Type
String

Optionality
Mandatory

Description
Defines the datastore type
to use for data reading.
Can take the following

values:

Autodesk AutoCAD
DWG/DXF

Bentley MicroStation
Design (V8)

Comma Separated
Value (CSV)

Esri ArcGIS Server

Esri Enterprise
Geodatabase

Esri File Geodatabase
(GDAL)

Esri Geodatabase File
(FILEGDB)

Esri Shape
ESRI Shape (GDAL)
Maplinfo Tab (GDAL)

Microsoft SQL Server
Spatial

PostGIS

Oracle

~

i] Note: Be careful to
use the exact
spelling and
capitalisation as
given .

REST API Guide

-33-

v1.7

Chapter 6 Data Stores

Property Name Data Type Optionality Description
import Credentials Optional Valid credentials depend
Credentials object (default: on importType.

empty object) il Note: Al values

are Strings, even if
the value is really
numeric or
Boolean.

(. J/

importClasses Array of Optional Import schema and
Class objects (default: null) mappings.

exportType String Optional Defines the datastore to
(default: “New use for data writing.
Export Equivalent to the Ul drop-
Credentials”) down box Data Store
Type on the Output
Details tab.
export Credentials Optional Valid credentials depend
Credentials object (default: null) on exportType.

~

3] Note: All values
are Strings, even if
the value is really
numeric or
Boolean.

(& J

exportClasses Array of Optional Export schema and
Class objects (default: null) mappings.

userDefined Array of Optional User-defined schema and
Classes Class objects (default: null) mappings.

REST API Guide -34 - v1.7

Chapter 6 Data Stores

Data store Creation from File Upload

Files can be uploaded to a datastore with a POST operation supplied with
Content-Type: application/octet-stream,and the file (usually .zip)
in the body.

il Note: Any format defined by a single file (e.g. CSV or DWG) can be
uploaded without being zipped (but zipped files are also supported).
Any format defined by multiple files or folders (e.g Esri Shapefile, Esri
FGDB) must always be uploaded as a single zip file.

POST http://[server]:[port]/lIntegrate/rest/datastores/
{path}

If the file is uploaded successfully, its schema will be populated and returned in
the importClasses section. If the correct exportType and
exportCredentials are provided, then the input schema will be copied and
reversed to create the exportClasses, which will also be returned.

REST API Guide -35- v1.7

Chapter 6 Data Stores

REST API Guide

Chapter 6 Data Stores

REST API Guide -37 - v1.7

Chapter 6 Data Stores

The following properties are common to all "File Upload" datastore types (see
"Credentials Properties" on page 41 for individual datastore credential
properties):

Property Data

Name Toe Optionality Description
Coordinate String Defines the coordinate system of
Reference the source data.

System An empty string indicates this

should be inferred from the data.

See the 1Integrate WebHelp for
more details on the format to
specify the coordinate system.

Source Files File Mandatory (and Formats vary by datastore (e.g.
(-..) path must be non- “Source Files (.shp)”.
empty). before This is an internally used label for
uplgadlng data; e uploaded data which is
optional

placed into the repository. The Ul
uses the path of the uploaded file
as the label. Re-using the same
label tells the datastore that it can
re-use the already uploaded
data.

afterwards, as
long as no more
datais to be
uploaded.

Providing Export Mapping Files

You may be required to provide a file as an Input Parameter value for the
export mapping of a datastore (e.g if you are using BigQuery).

POST http://[DatabasePath]/exportFile

Data Store Creation from Credentials

'3’] Note: If credentials are supplied without a schema, 1Integrate can
automatically connect to the datasource, fetch the schema and
generate a default mapping (see "Automatic Schema Derivation" on
page 52). This works for any combination of import credentials and/or
export credentials.

Specific credentials to be supplied depend on the type of datastore required
(see "Credentials Properties" on page 41).

REST API Guide -38- v1.7

https://1spatial.com/documentation/1integrate

Chapter 6 Data Stores

REST API Guide

Chapter 6 Data Stores

REST API Guide -40 - v1.7

Chapter 6 Data Stores

Credentials Properties

All properties are optional unless stated otherwise.
All optional Boolean properties default to false unless stated otherwise.

All properties are represented as Strings in responses, but can be
provided as either Strings or the real type of the property in requests.

il Note: See the 1Integrate WebHelp for more guidance on datastore
import and export properties.

Maplnfo Tab (GDAL)

Take care to spell the datastore importType property as follows:

"importType": "MapInfo Tab (GDAL)"
Import
Property Name R Optionalit Description
perty Type P y P
Coordinate Reference System String Mandatory An empty
string
indicates this
should be
inferred from
the data.

REST API Guide -41- v1.7

https://1spatial.com/documentation/1integrate

Chapter 6 Data Stores

Property Name 2;:; Optionality = Description
Source Files String Mandatory Thisis an
(.tab,.dat,.map,.id,.ind,.mif,.mid) (and must be internally
non-empty) used label for
before the uploaded
uploading data which is
data; placed into
optional the
afterwards, repository.
aslongasno The Uluses
more datais the path of
to be the uploaded
uploaded. file as the
label. Re-
using the
same label
tells the
datastore that
it can re-use
the already
uploaded
data.
Allow invalid geometries Boolean
Export
Property Name 2;:; Optionality Description
Destination Files String

(.tab,.dat,.map,.id,.ind,.mif,.mid)

Oracle
Take care to spell the datastore importType property as follows:
"importType": "Oracle"

Configuration of an Oracle datastore is complicated. Every parameter is
individually optional, however there are some mandatory combinations.

One of the following connection configurations must be satisfied:

REST API Guide -42 - v1.7

JNDI Location

Chapter 6 Data Stores

Net Service Name, Username and Password

Service Name, Host, Port, Username and Password

The above is the priority order in which a connection is attempted.

If you supply more than one type of configuration, only the first prioritised
method will be used. For example, if JNDI Location and the Service Name
parameters are provided but connection via JNDI fails, the request will fail
without attempting to use the Service Name connection mode.

Import
Property Name Data Type Optionality
Username String
Password String
(Password)
Net Service String
Name
Host String
Port Integer
Service Name String
JNDI Location String
Schema Name String
Allow Invalid Boolean
Geometries
Scale for Integer
Coordinate Data
Export
P':::;:y Data Type Optionality
Username String
Password String
(Password)

Description

See "Password
Properties" on page 52.

Note the capitalisation.

Description

See "Password Properties"
on page 52.

REST API Guide

-43 -

v1.7

Chapter 6 Data Stores

Property

Name Data Type Optionality Description

Net Service String

Name
Host String
Port Integer
Service String
Name
JNDI String
Location
Schema String
Name

Esri Shape

il Note: Esri Shape datastores can be used with either GDAL or FME
connections. Some of the following properties are only relevant to
FME connections.

Take care to spell the datastore importType property as follows:
For FME connections:
"importType": "Esri Shape"

For GDAL connections:

"importType": "ESRI Shape (GDAL)"
Import
Property Data . . P
Name T Optionality Description
Coordinate String Mandatory An empty string indicates this
Reference should be inferred from the
System data.

REST API Guide -44 - v1.7

Chapter 6 Data Stores

Property Data

Name Type Optionality Description
Source Files String Mandatory and This is an internally used label
(.shp) must be non- for the uploaded data which is

empty before placed into the repository. The
uploading data; Ul uses the path of the
optional uploaded file as the label. Re-
afterwards, as using the same label tells the
long as no more datastore that it can re-use the
dataisto be already uploaded data.
uploaded.

Allow invalid Boolean
geometries

The following parameters are only necessary for FME connections
(not GDAL):

Import FME String
Log File

Fix ring Boolean
direction and

inclusion

errors

Reverse Boolean
coordinate
axis order

(Y,X)

Convert Boolean
attribute

names to

upper case

Treat Boolean
measures as
elevation

Encoding String Mandatory

Clipto Boolean
envelope

REST API Guide -45 - v1.7

Property
Name

Dissolve
holes
Trim
preceding
spaces

Exposed
attributes

Export

Property
Name

Destination
Files (.shp)

Chapter 6 Data Stores

Data

Type Optionality Description

Boolean

Boolean

String Mandatory

Data

Type Optionality Description

String Mandatory and must be non-
empty before uploading data;
optional afterwards, as long as
no more data is to be
uploaded.

The following parameters are only necessary for FME connections

(not GDAL):

Coordinate
Reference
System

Export FME

Log File

Reverse
coordinate
axis order

(Y,X)

Convert
attribute
names to
upper case

String Mandatory An empty string
indicates this
should be
inferred from
the data.

String

Boolean

Boolean

REST API Guide -46 - v1.7

Chapter 6 Data Stores

Property Data

Name Type Optionality Description
Treat Boolean
measures as
elevation
Encoding String Mandatory
Strict Boolean
compatibility

Surface and String
solid storage

Esri File Geodatabase (FILEGDB)

'{I Note: Esri File Geodatabase can be used with either GDAL or FME
connections. Some of the following properties are only relevant to
FME connections.

Take care to spell the datastore importType property as follows:

For FME connections:

"importType": "Esri Geodatabase File (FILEGDB)"

For GDAL connections:

"importType": "Esri File Geodatabase (GDAL)"

Import

Property Data . . P
Name T Optionality Description

Coordinate String Mandatory An empty string indicates this
Reference should be inferred from the
System data.
Source Files String Mandatory and This is an internally used label
(.gdb) must be non- for the uploaded data which is

empty before placed into the repository. The
uploading data; Ul uses the path of the
optional uploaded file as the label. Re-
afterwards, as using the same label tells the
long as no more datastore that it can re-use the
dataisto be already uploaded data.
uploaded.

REST API Guide -47 - v1.7

Chapter 6 Data Stores

Property Data

Name Type Optionality Description

Allow invalid Boolean
geometries

The following parameters are only necessary for FME connections
(not GDAL):

Import FME String
Log File

Fix ring Boolean
direction and

inclusion

errors

Reverse Boolean
coordinate
axis order

(Y,X)

Clip to Boolean
envelope

Exposed String Mandatory

attributes
Export
Property Data . . P
Name T Optionality Description
Destination String Mandatory and must be non-
Files (.gdb) empty before uploading data;

optional afterwards, as long as
no more data is to be uploaded.

The following parameters are only necessary for FME connections
(not GDAL):

Coordinate String Mandatory An empty string

Reference indicates this

System should be
inferred from
the data.

REST API Guide -48 - v1.7

Chapter 6 Data Stores

Property Data

Name Type Optionality Description
Export FME String
Log File
Reverse Boolean
coordinate
axis order
(¥,x)
PostGIS
Take care to spell the datastore importType property as follows:
"importType": "PostGIS"
Import
Property . . P
Name Data Type Optionality Description
Coordinate String Mandatory An empty string indicates
Reference this should be inferred
System from the data.
Source String Mandatory
Database

Import FME Log String

File

Allow invalid Boolean
geometries

Fix ring Boolean

direction and
inclusion errors

Reverse Boolean
coordinate axis
order (y,X)

Command Integer Mandatory
timeout

Retrieve all Boolean Mandatory Must be set to true to do
schemas anything useful with the
datastore.

REST API Guide -49 - v1.7

Chapter 6 Data Stores

Property . . P
Name Data Type Optionality Description
Import host String Mandatory
name
Import port Integer Mandatory
number
Import String Mandatory
username
Import String See "Password
password (Password) Properties" on
page 52.
WHERE clause String Mandatory

Clip to envelope Boolean

Read cache Integer Mandatory

size

Assume one Boolean

SRID per

column

Exposed String Mandatory

attributes
Export

Property Name Data Type Optionality Description
Coordinate String Mandatory An empty string
Reference indicates this should
System be inferred from the
data.
Source Database String Mandatory

Export FME Log String
File

Reverse Boolean
coordinate axis
order (y,X)

Command Integer Mandatory
timeout

REST API Guide -50 - v1.7

Chapter 6 Data Stores

Property Name Data Type Optionality Description
Export host name String Mandatory
Export port Integer Mandatory
number
Export username String Mandatory
Export password String See "Password

(Password) Properties" on
the facing page.

Spatial type is Boolean

geography
(default:
geometry)

Spatial column String Mandatory
name

Orient polygons Boolean

Other Data Store Formats

The following formats are also supported by the REST API. Contact 1Spatial
for further details.

Comma Separated Value (CSV)

"importType": "Comma Separated Value (CSV)"
Autodesk AutoCAD DWG/DXF
"importType": "Autodesk AutoCAD DWG/DXE"

Bentley MicroStation Design (V8)

"importType": "Bentley MicroStation Design (V8)"
Microsoft SQL Server Spatial
"importType": "Microsoft SQL Server Spatial"

Esri Enterprise Geodatabase

"importType": "Esri Enterprise Geodatabase"

REST API Guide -51- v1.7

Chapter 6 Data Stores

Password Properties

Some credential properties are considered Passwords.

These:

Will never appear in responses.
Are optional in requests.

il Note: If a password property has previously been set, and is not
supplied with a request to update a resource, the existing password will
be used.

Automatic Schema Derivation

Import Schema Derivation

Upon a PUT request, or a file upload to a datastore, the import schema will be
derived from the import credentials if all of the following are true:

Import credentials have been supplied.

No import schema has been supplied.

Import schema can be obtained from the supplied credentials.

Export Schema Derivation

Upon a PUT request, or a file upload to a datastore, the export schema will be
derived from the import schema and user-defined schema if all of the following
are true:

Import schema exists (was either supplied or derived as above).

Export credentials were supplied.

No export schema has been supplied.

REST API Guide -52 - v1.7

Chapter 6 Data Stores

Schema Mapping

Schema mapping may be optionally supplied within the importClasses or
exportClasses lists in a datastore.

Schema mapping elements are omitted by default for clarity but may be added
to any class or attribute definition.

Valid options are:

mappedName — custom name for the class or attribute
indexed — if the attribute should be indexed
reported —if the attribute should be included in any reports

disabled —if the attribute should be displayed in the user interface, but
not loaded into the system when running sessions

il Note: The response you get back from this update request is almost
identical to the request, but with different timestamps and version.

PUT http://[server]:[port]/lIntegrate/rest/datastores/
{path}

{
"importType": "RandomMockDataStore",
"importCredentials": {
"ClassCount": "7",
"InstanceCount": "50",
"StringAttributeCount": "12",
"LongAttributeCount": "5",
"Seed": "2",
"DoubleAttributeCount": "3",
"IntAttributeCount": "4"
by
"importClasses": [
{
"attrs": [
{
"indexed": true,
"reported": true,
"dataType": "int",
"mappedType": "Integer",
"disabled": true,

"name": "force-int"

REST API Guide -53- v1.7

Chapter 6 Data Stores

REST API Guide

Chapter 6 Data Stores

Test and Refresh Mapping
You can test your input and export mapping using your REST client.

Test Input Mapping:

To test input mapping, make the following request:

GET http://[host]:[port]/lIntegrate/rest/datastores/
[datastore path]/import/test

This will return a “success” flag, as well as an optional “message” detailing any
errors.

Test Output Mapping:

To test output mapping, make the following request:

GET http://[host]:8080/1Integrate/rest/datastores/
[datastore path]/export/test

This will return a “success” flag, as well as an optional “message” detailing any
errors.

Refresh Mapping:

To refresh mapping, make the following request:

REST API Guide -55- v1.7

Chapter 6 Data Stores

PUT http://[host]:8080/1Integrate/rest/datastores/
[datastore path]/refresh

This will return a “success” flag, as well as an optional “message” detailing any

errors.

User Defined Classes

You can add temporary classes that are only used in the rules/actions to a
datastore.

Note again that the response is almost identical to the request, just with
different timestamps and version.

PUT http://[server]:[port]/lIntegrate/rest/datastores/
{path}

REST API Guide -56 - v1.7

Chapter 6 Data Stores

REST API Guide

Chapter 6 Data Stores

REST API Guide

Chapter 6 Data Stores

CopyTo Task Output File Download

The resulting data from a CopyTo task can be downloaded using a GET
request, along with the path to the data store and /outputFile:

GET http://[server]:[port]/1Integrate/rest/datastores/Test/outputFile

This request will output a file with a default name data with no extension, to set
a filename use the request:

http://[server]:[port]/1Integrate/rest/datastores/Test/outputFile?fileName=
[filename].[extension]

{I Note: This request will produce application/octet-stream
content. An Accept: HTTP Header is not required, but if included ensure
it states Accept:application/octet-stream, any other content
will not work.

REST API Guide -59 - v1.7

Chapter 7 Rules

Rules

Rules are encoded in a simplified JSON form as used by the 1Integrate user
interface.

Below is an example of a rule response from a GET request.
GET http://[server]:[port]/lIntegrate/rest/rules/{path}

REST API Guide -60 - v1.7

Chapter 7 Rules

REST API Guide -61- v1.7

Chapter 8 Actions

ﬂ Actions

As with rules, actions are encoded in a simplified JSON form as used by the
1Integrate user interface.

Below is an example of an action response from a GET request.
GET http://[server]:[port]/lIntegrate/rest/actions/{path}

REST API Guide -62 - v1.7

Chapter 8 Actions

Action Maps

Action maps are lists of rule and action pairings.

GET http://[server]:[port]/lIntegrate/rest/actionmaps/
{path}

REST API Guide -63 - v1.7

Chapter 9 Results

ﬂ Results

il Note: Session results can only be accessed if a session is paused or
finished. Once a session has been stopped or reset, results are
removed from the database and no longer accessible.

Rewinding over a specific task will also delete the results of that task.

Task Summary

The status and results for a session are available from a results resource that is
parallel to the session resource.

The same session path is used to access the results for that session. For
example, if a session resource is at:

http://[server]:[port]/1Integrate/rest/sessions/Folder1/MySession

The results are available from:

http://[server]:
[port]/lIntegrate/rest/results/Folderl/MySession

Return the summary of a specific task:

GET http://[server]:[port]/lIntegrate/rest/results/
{path}?detail=taské&taskIdentifier=

REST API Guide -64 - v1.7

Chapter 9 Results

Detailed Non-conformance or Error Reports

Returns a detailed non-conformance report or an error report for a task.

GET http://[server]:[port]/lIntegrate/rest/results/
{path}?detail=report&taskIdentifier=&start=0&count=1000

REST API Guide

Chapter 9 Results

Summarised Error Reports

Returns the aggregated error report of a session (if path points to a session),
or the aggregated error report of a folder of sessions (if path points to a folder).

GET http://[server]:[port]/lIntegrate/rest/results/
{path}?detail=aggregatedErrors

Summarised Folder Results

Gives you the aggregated summary report of all sessions in a folder.

REST API Guide - 66 - v1.7

Chapter 9 Results

GET http://[server]:[port]/lIntegrate/rest/results/
{path}?detail=amalgamatedResults

REST API Guide

Chapter 9 Results

REST API Guide

Chapter 9 Results

REST API Guide

Chapter 9 Results

REST API Guide -70- v1.7

	1 1Integrate REST API
	Notation
	Defaults

	2 Authentication
	3 Basic Operations
	Folder Listing
	Retrieving Resources
	Creating and Updating Resources
	Creating Folders or Updating Folder Metadata
	Deleting Resources
	Cloning Resources

	4 Resources
	Common

	5 Sessions
	Session Properties
	Session Extents

	Session Parameters
	Set and Retrieve individual Parameters

	Session Control
	Check Session Status
	Session Summary Results
	Tasks
	OpenData
	BuildTopology
	CheckRules
	ApplyActions
	ApplyActionMap
	CopyTo
	Commit
	Pause

	6 Data Stores
	Data store Resource Properties
	Data store Creation from File Upload
	Providing Export Mapping Files

	Data Store Creation from Credentials
	Credentials Properties
	MapInfo Tab (GDAL)
	Oracle
	Esri Shape
	Esri File Geodatabase (FILEGDB)
	PostGIS
	Other Data Store Formats

	Password Properties
	Automatic Schema Derivation
	Import Schema Derivation
	Export Schema Derivation

	Schema Mapping
	Test and Refresh Mapping

	User Defined Classes
	CopyTo Task Output File Download

	7 Rules
	8 Actions
	Action Maps

	9 Results
	Task Summary
	Detailed Non-conformance or Error Reports
	Summarised Error Reports
	Summarised Folder Results

	Bookmarks
	Session2
	Session
	Datastor
	Credenti
	Password
	Automati
	Task

